

Time: 3 hrs.

1

Max. Marks: 80

#### Note: Answer any FIVE full questions, choosing ONE full question from each module.

# Module-1

a. What are the ideal requirements of a control system? Explain. (08 Marks)
b. Explain the following controllers with the help of block diagrams and response curves:

(i) Proportional plus integral. (ii) Proportional plus integral plus derivative. (08 Marks)

#### OR

- 2 a. How control systems are broadly classified? Explain with the help of block diagrams and examples. (08 Marks)
  - b. Compare and contrast proportional, integral and differential controllers. (08 Marks)

# Module-2

3 a. For the physical system shown in Fig. Q3 (a), draw the Free Body diagram and write the system equations in time domain and S domain. (10 Marks)



- b. With usual notations, obtain the transfer function of a field controlled D.C. motor. (06 Marks)
- a. Obtain the control ratio C/R for the block diagram shown in Fig. Q4 (a). (08 Marks)

 $R \xrightarrow{+} G_{1} \xrightarrow{+} G_{2} \xrightarrow{+} G_{3} \xrightarrow{-} G_$ 

4

# IBRAR 15ME73

b. Find the transfer for the signal flow graph shown in Fig. Q4 (b) by using Mason's gain formula. (08 Marks)



With the help of a time response curve of a second order system, explain the following: 5 a. (i) Delay time (ii) Rise time (iii) Peak time (iv) Settling time (v) Maximum over shoot (08 Marks)

b. The open loop transfer function of a unity feedback system is  $G(s) = \frac{4}{s(s+1)}$ . Determine natural frequency, damped natural frequency, rise time, peak time, peak overshoot and settling time. (08 Marks)

## OR

6 Sketch the root locus plot for the given system, GH = - $\frac{--}{s(s+4)(s+2+2J)(s+2-2J)}$ and determine the range of K for which the system remains stable. (16 Marks)

## Module-4

7 State and explain Nyquist stability criteria. (04 Marks) b. Draw the complete Nyquist plot for the system whose open loop transfer function is given

 $\frac{1}{s(1+0.1s)(1+0.5s)}$ . Determine the range 'K' for which the system is stable. by, GH = -(12 Marks)

#### OR

The open loop transfer function of a unity feedback control system is: 8 90(1+0.5s)(1+0.1s)(1+2s)(1+0.02s)G(s)

Draw Bode plot and determine phase margin and gain margin.

 $\begin{vmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{3} \end{vmatrix} = \begin{bmatrix} -2 & 1 & 2 \\ 4 & 0 & 3 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{bmatrix} + \begin{bmatrix} 0 & 4 \\ -5 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{bmatrix}$ 

(16 Marks)

## Module-5

- What are the types of compensation? Explain with the help of simple block diagrams. 9
  - (08 Marks) b. What are the characteristics of lead compensator? Explain a simple lead compensator with simple diagram. (08 Marks)

#### OR

10 Define controllability. What is Kalman's test for controllability and observability? (06 Marks) a. Using Kalman's test, determine the controllability of the following system: b.

(10 Marks)